求二元函数的极值。
案例:阅读下列有关“_元一次方程的实践与探索”教学片段。
(多媒体展示)学校需要制作一块广告牌,请来两名工人。已知师傅单独完成需4天,徒弟
单独完成需6天,两人合作需要几天完成?
解:设两人合作需要x天完成,根据题意列方程:
解方程.得x=2.4。
答:师徒两人合作需要2.4天完成任务。
师:同学们对本题还有疑问么?
生:没有了!
(情境拓展)
师:真没有了?同学们想不想试着提出其他的问题来考考大家呢?如果想,请把问题写下来。
教师的话引起了学生们的兴趣,学生个个跃跃欲试。
稍后。教师在整理学生们的问题的过程中,发现有的学生按照教科书的提示出了这样一个
问题。
(1)学校需要制作一块广告牌,请来两名工人。已知师傅单独完成需4天,徒弟单独完成需6天.一人先做一天再和另一人合作,需几天完成?
生1:这个问题简单,把一人先做的量从总量中扣掉不就行了。
师:你的想法很好!
生2(迫切地举手):老师,这道题出错了!问题说“一人先做”,可是没说哪个人先做啊。
生3:对,可能是师傅先做,也可能是徒弟。所以我们得分两种情况来解决这个问题!
生3的回答赢得了师生们热烈的掌声,解答过程略。)
师:老师想把这个问题略加改动,还有信心挑战吗?
生(齐声):有!
(多媒体展示)
(2)学校需要制作一块广告牌,请来两名工人。已知师傅单独完成需4天,徒弟单独完成需6天.两人先合作一天再一人单做,几天完成?
很快.不少同学积极举手,脸上露出自信的表情。
生4:我发现问题(1)是先独做再合作,而问题(2)则正好相反。所以只要将两人合作的工作量扣掉就可以了。
生5:跟问题(1)类似,我们也要分两种情况解决。
师(a-出欣慰的笑容):/两4-#-.-"同学的分析太精彩了!看来大家已经感受到了数学中的分类讨论思想。现在老师看看同学4r1-还提出了什么问题。
此时学生情绪高涨,期待老师展示下一个题目。
(多媒体展示)
(3)学校需要制作一块广告牌,请来两名工人。已知师傅单独完成需4天,徒弟单独完成需6天,两人合作,完成后共得报酬l 000元,如果按个人完成的工作量计算报酬,那么该如何分配?
生6(按捺不住兴奋).这个问题太简单了,师傅和徒弟的工作效率之比是6:4,所以师傅应得600元,徒弟应得400元。
师:你能灵活地应用师徒二人的工作效率之间的关系来解答此题,思维很敏捷呀!
师(故作困惑):现由徒弟先做l天,再由两人合作,完成后共得报酬450元。如果按个人完成的工作量计算报酬,那么又该如何分配?
学生们认真思考着……
在问题(3)的启发下,许多学生对本题予以了正确解答。
问题:
(1)分析案例中教学过程的特点:
(2)根据案例内容,结合你的教学经历,说明创造性地使用数学教科书的原则。
给出中学几何研究图形的几个主要方法,并试以其中一种为例,说明该种方法的基本特点。
针对初中数学“二元一次方程”的内容,完成下列任务。
(1)写出“二元一次方程”这节课的教学目标以及重难点。
(2)设计一个与二元一次方程有关的例题,并说明你的设计意图。
(3)举例写出几个适合本节课教学的教法和学法。
若方程的三个根是a、6、c,求证:
已知向量a,b,满足其中k>;0。
(1)试用k表示a·b,并求出a·b的最大值及此时aL5 b的夹角0的值:
(2)当a·b取得最大值时,求实数A,使la+Abl的值最小,并对这一结论作出几何解释。
数学教学中如何贯彻实践性原则?
设
(1)求lAl;
(2)已知线性方程组AX-b有无穷多解,求a,并求AX=b的通解。
函数是( )。
求二元函数的极值。
新课程标准针对义务教育阶段的数学课程,提出了、哪几个核心概念?
四川省2001年会计从业资格考试《会
2008年会计从业资格考试会计实务模
2004年上海上半年会计从业资格考试
2010年会计职称初级会计实务全真模
2010年会计职称初级会计实务全真模
2010年会计职称初级会计实务全真模
2010年会计职称初级会计实务全真模
2010年会计职称初级会计实务全真模
江苏2010年《初级会计电算化》考试
2010年湖南会计从业考试《初级会计