一起答
主观

王某从外地来本市参加会议。他乘火车、轮船、汽车、飞机的概率分别为0.3、0.2、0.1、0.4,而他乘火车、轮船、汽车、飞机准时到达的概率分别为0.9、0.6、0.8、0.95。如果他准时到达了,则他乘汽车来的概率是多少。

试题出自试卷《数量方法(二)2015年10月全国统一真题题试卷(00994)》
参考答案
查看试卷详情
相关试题
  1. 在其它条件不变的情况下,某种商品的销售量(y)与该商品的价格(x)有关。现对给定时期内的价格与销售量进行观察,得到如题33表所示的一组数据:

    现规定选用双曲线函数:对价格与销售量进行回归分析。

    要求:(1)以商品的销售量为因变量建立曲线回归方程;(8分)

    (2) 当价格为8元时估计平均销售量。(2分)

  2. 已知某集市三种商品有关资料如题31表所示:

    请以二月销售额为权数计算价格指数。

  3. 某厂家声称其生产的A品牌液晶显示器寿命不低于5万小时。从该厂家生产的一批A品牌液晶显示器中随机抽取9台,测得寿命分别为4.5,5,4.7,4.8,5.1,4.9,4.7,5,4.5(单位:万小时)。设该厂家生产的A品牌液晶显示器寿命服从正态分布。

    (1)求该厂家生产的A品牌液晶显示器寿命的样本均值。(2分)

    (2)求该厂家生产的A品牌液晶显示器寿命的样本方差。(2分)

    (3)请以95%的可靠程度检验该厂家声明是否真实可信?并给出相应的原假设、备择假设及检验统计量。(6分)

  4. 某企业历年来的工、世总产值资料如题30表所示:

    试计算该企业几年来的环比增长量、定基(以1988年为基期)增长量和年平均增长量。

    请将题30表绘制在答题卡上作答。

  5. 某人估计其家庭九月份的电费(元)由下式决定:X=28.5+0.6C,其中C是九月份温  度,它是均值为34.2、标准差为2.2的连续型随机变量。求该家庭九月份的平均电费以  及电费的标准差。

  6. 假设由某汽车制造商提供的36辆新车组成的样本中,每辆新车的疵点数如下:1 2 0 0 3 0 1 1 2 2 2 0 1 0 2 0 1 3 0 1 2 1 0 1 0 3 0 1 1 1 0 1 0 2 0 1。求该汽车制造商生产的汽车每辆疵点数的总体均值μ的95%的置信区间。

  7. 已知某生产线在2010年上半年各月发生故障的次数分别为:5、4、7、5、5、4次,计算各月故障次数的平均数和方差。

  8. 王某从外地来本市参加会议。他乘火车、轮船、汽车、飞机的概率分别为0.3、0.2、0.1、0.4,而他乘火车、轮船、汽车、飞机准时到达的概率分别为0.9、0.6、0.8、0.95。如果他准时到达了,则他乘汽车来的概率是多少。

  9. 在假设检验中,如果仅仅关心总体均值与某个给定值是否有显著区别,应采用的检验为_________.

  10. 设一元线性回归方程为若己知b=2则a等于_________。